1

### **Cooperative Decision Making for Multirobot Systems**

### **Geoffrey A. Hollinger**

Assistant Professor Robotics Program Mechanical, Industrial & Manufacturing Engineering Oregon State University

July, 2015

### Why are multirobot problems hard?

- Choices increase drastically with more robots
  - Tasks require coordination between robots
  - Joint action-space grows with number of robots



### Why are multirobot problems hard?

- Choices increase drastically with more robots
  - Tasks require coordination between robots
  - Joint action-space grows with number of robots



- Centralized solver (Smith et al. '05, Kurniawati et al. '08)
  - One leader plans for the entire team
  - The leader tells everyone else what to do



- Team coordination (Gerkey et al. '05)
  - Robots dynamically form and disband teams
  - Team leader plans for all robots on the team

#### Advantages

- Somewhat robust
- Relatively decentralized



#### Disadvantages

- Can still require high computation
- Need to determine when to form teams

#### How can we solve multirobot problems?

- Implicit coordination (Grocholsky '02, Hollinger et al. '08)
  - Each robot plans only its own actions
  - Robots communicate information to improve their actions
    - Examples: plans, measurements, target estimation



#### How can we solve multirobot problems?

- Market-based coordination (Kalra et al. '05, Zlot et al. '06)
  - Each robot plans for itself and for some teammates
  - Robots auction control actions to other robots



Disadvantages

- Higher communication
- Need to determine when to auction

## Why decentralize?

- Centralized solvers
  - Single entity determines allocations
  - Requires reliable communication
- Decentralized solvers
  - Does not require central arbiter
  - Possible to generate ad hoc centralization for clique

Orea



## Multirobot optimization

- Problem statement: given K robots with limited battery life B<sub>k</sub>, efficiently perform a task in a bounded environment W
- Assumptions:
  - Bounded planar workspace W
  - Workspace is divided into free regions  $W_{\rm free}$  and obstacle regions  $W_{\rm obs}$
  - Workspace partition into obstacle and free could be initially unknown
  - The robots are equipped with a sensor that allows them to observe the environment with limited range and visibility radius

**Urego** 

### **Optimization Representation**

 Multirobot coordination can be cast as an optimization of the form

 $P^* = argmax_P R(P) s.t. |P_k| < B_k for all k$ ,

- *R*(*P*) is a reward metric related to the task completed by a set of trajectories *P*
- |P<sub>k</sub>| is the battery consumed by a trajectory
  P<sub>k</sub> for robot k

Oreao

## **Reward Metrics**

#### Search

- Probabilistic: maximize probability of capturing one or more targets
- Guaranteed: search environment such that worst-case target could not escape

#### Exploration

- Observe as much of the environment as possible

### Mapping

- Maximize map accuracy in limited time
  - Average accuracy
  - Worst-case accuracy
- Note: objectives may not be aligned (i.e., maximizing one may not maximize another)

### Example domain: Multi-robot search



- Multiple vehicles gather information about the environment
  - Sharing information during the mission can improve performance (e.g., state, observations, plans)
  - In many cases communication is limited by configuration

## Modeling the search problem

• Discounted reward metric:  $F_Y(A) = \gamma^t$ 



**Oregon St** 

### Modeling the search problem

- Discounted reward metric:  $F_Y(A) = \gamma^t$
- Probabilistic motion model (average-case)

$$\operatorname*{argmax}_{A} \sum_{Y \in \Psi} \Pr(Y) F_Y(A)$$

Adversarial model (worst-case)

$$\operatorname*{argmax}_{A} \min_{Y} F_{Y}(A)$$

### Search optimization

• Maximize discounted probability of capture

 $A^* = \underset{A}{\operatorname{argmax}} \sum_{Y \in \Psi} \Pr(Y) F_Y(A)$  where  $F_Y(A) = \gamma^t$ 

- Receding-horizon planning
  - Examine paths within fixed depth
  - Replan
- Implicit coordination
  - For all robots
    - Plan and share path with others
    - Others assume shared paths fixed
- Linear scalability in team size



**Ureao** 

### Performance guarantees

- Given a set function (e.g. discounted capture probability)
- Submodular if:

 $A \subseteq B \Rightarrow F(A \cup C) - F(A) \ge F(B \cup C) - F(B)$ 

Nondecreasing if:

 $A \subseteq B \Rightarrow F(A) \le F(B)$ 





### Performance guarantees

- Theorem: Average-case search optimizes a nondecreasing, submodular set function
- This means: Implicit coordination yields a performance guarantee (over the horizon)





Oreao

(Hollinger et al. IJRR '09)

### Underwater search simulations

- Simulated island and harbor environments
- AUVs must locate a target at a fixed depth
- Each robot plans using its current belief
  - Communication through acoustic channel
  - Allows for "opportunistic" belief merging





**Ureao** 

Santa Barbara island: 4 km x 4 km Long beach harbor: 11 km x 8 km 18

### Underwater search video



### Underwater search results

- Perfect communication: unrealistic baseline
- Continual connectivity: conservative planning for full communication
- Proposed method: implicit coordination with data fusion



Each data point averaged over 200 simulations

### Example domain: exploration

- Finds open cells next to unknown cells (Yamauchi '97, Burgard et al. '00)
- Uses blob detection to identify frontier regions
- Assigns robot to explore nearest frontier region
  - Alternatives: TSP, market-based, etc.



## State machine

- Coordinates robots
- Robust to unreliable communication
- Considers limited battery life
- Add additional states for "sacrifice" and "relay" capabilities (Cesare et al. '15)



### Autonomous quadcopter mapping

 Two custom quadcopter UAVs mapping a building



(Cesare et al., ICRA 2015)

#### Example domain: UAV package delivery

- Increasing popularity of delivery drones: UPS, Amazon, etc.
- Dense UAV traffic in cluttered
  urban environment
- No current framework for large scale coordination



#### 25

**Oregon State** 

### A Cross-Section of the Airspace

- Automated UAV traffic management
- Challenges:
  - Narrow thoroughfares of dense traffic
  - Heterogeneous UAVs
  - Dynamic obstacle landscape
- Goals
  - Minimize conflict occurrences
  - Avoid cascading effects
  - Maintain throughput



### Multiagent UAV Traffic Management (UTM)

- Divide airspace into sectors
  - Assign single agent to manage each sector
- Multiagent team:
  - Agents individually learn policy for assigning sector traversal costs
  - Reward is total number of conflicts in **global** system



## A Hierarchical Approach



# **UTM Learning Agents**

- Learn the cost of travel to apply to UAVs in the sector
- Neural network control
  - Inputs: UAV counts in sector
    - Separate into traffic types, e.g. heading, priority, platform etc.
  - Outputs: Cost of through-sector travel for each traffic type
- Cooperative coevolution to learn NN weights
  - Fitness value: number of conflicts



## Simulation Experiments

- Urban airspace
  - 256×256 cell map of San Francisco
  - 15 Voronoi partitions
- Fitness calculation
  - Linear: no. conflicts at each cell summed
- UAVs
  - 100 UAVs in airspace during single learning epoch
  - A\* planning at both sectorand low-level
  - Conflict radius: 2 cells (approx. 4m)



#### Learning Results: Total Conflicts



- Team performance over 100 learning epochs
- Averaged over 20 trials
- 16% reduction in total system conflicts

### Learning Results: Congestion Reduction

#### Linear Cost Fitness Function



Random initialized sector costs

Learned sector costs

(Rebhuhn et al. IROS 2015, to appear)

## Multirobot cooperation

- Future directions
  - Resource-aware coordination
    - System degrades gracefully as computation and communication decreases
    - Scalability to large scale systems
  - Operator-driven objectives
    - Human selects priority of objectives
    - Reduce cognitive load on operator



## Questions?



#### Geoffrey A. Hollinger Robotic Decision Making Laboratory geoff.hollinger@oregonstate.edu http://research.engr.oregonstate.edu/rdml/



Funding for this work: Office of Naval Research, National Science Foundation, and NASA

## **Multi-UAV** Exploration

- Can use other exploration techniques with state machine on top
- Improvements range from 5% to 18%
- Better results with a larger team



Average of 200 simulation runs, with random start points.