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Why are multirobot problems hard”? ezt

® Choices increase drastically with more robots
® Tasks require coordination between robots

® Joint action-space grows with number of robots
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How can we solve multirobot problems? & vt

« Centralized solver (Smith et al. ‘05, Kurniawati et al. ‘08)

- One leader plans for the entire team
- The leader tells everyone else what to do

Advantages Disadvantages
e (Considers all ° High computation
possible ° Single—point

strategies failure
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Oregon State

How can we solve multirobot problems? & vt

« [eam coordination (Gerkey et al. ‘05)
- Robots dynamically form and disband teams
- Team leader plans for all robots on the team

Advantages Disadvantages

* Can still require

maas) ammm high computation

® Need to determine

e Somewhat

robust

° Relatively
when to form

AR ‘ls‘ :ji } teams

decentralized
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How can we solve multirobot problems? & vt

« Implicit coordination (Grocholsky '02, Hollinger et al. ‘08)
- Each robot plans only its own actions

- Robots communicate information to improve their
actions

. Examples: plans, measurements, target estimation

Advantages Disadvantages

® Scalable ® May perform

e Robust suboptimally

® Decentralized

e Little .
communication kN usﬁ “ﬁq
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How can we solve multirobot problems? & vt

« Market-based coordination (Kalra et al. ‘05, Zlot et al. ‘06)

- Each robot plans for itself and for some
teammates

- Robots auction control actions to other robots

Advantages Disadvantages
° Relatively ° Higher

scalable communication

e Robust ® Need to determine

e Decentralized when to auction




Why decentralize? e
« Centralized solvers
- Single entity determines allocations
- Requires reliable communication
« Decentralized solvers

- Does not require central arbiter
- Possible to generate ad hoc centralization for clique
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Multirobot optimization L reaenzias

« Problem statement: 8iven K robots with limited

batte(rjy life B,, efficien
bounded environment

« Assumptions:

- Bounded planar workspace W

- Workspace is divided into free regions W, and
obstacle regions W, .

- Workspace partition into obstacle and free could be
initially unknown

- The robots are equipped with a sensor that allows
them to observe the environment with limited range

and visibility radius

%/perform ataskin a



Optimization Representation

o Multirobot coordination can be cast as an
optimization of the form

P* = argmaxp R(P) s.t.|Py| < By for all k,

« R(P) is a reward metric related to the task
completed by a set of trajectories P

. |P,| is the battery consumed by a trajectory
P, for robot k
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Reward Metrics Oreoon State

« Search

- Probabilistic: maximize probability of capturing one or
more targets

- Guaranteed: search environment such that worst-case
target could not escape

. Exploration

- Observe as much of the environment as possible
. Mapping

- Maximize map accuracy in limited time

« Average accuracy
. Worst-case accuracy

. Note: objectives may not be aligned (i.e.,
maximizing one may not maximize another)

11



Oregon State

Example domain: Multi-robot search o owmvesiy

Where are the targets of interest?
Are there interesting events occurring?

. Multiple vehicles gather information about the environment

- Sharing information during the mission can improve performance
(e.g., state, observations, plans)

- In many cases communication is limited by configuration
12



Modeling the search problem <
. Discounted reward metric: Iy (A ‘

it 1Y

Target Searcher Discount time
path paths factor
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Modeling the search problem &

. Discounted reward metric: Fy-(A) = ~

t

« Probabilistic motion model (average-case)

argmax » Pr(Y)Fy(A)
4 yvew
« Adversarial model (worst-case)

argmax min Fy (A)
A Y
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Oregon State

Search optimization L reaent

* Maximize discounted probability of capture

A* = argmax Z Pr(Y)Fy (A) where Fy (A) =+
A yew

* Receding-horizon planning
» Examine paths within fixed depth
* Replan

e Implicit coordination

e For all robots
Plan and share path with others
Others assume shared paths fixed

 Linear scalability in team size

(Hollinger et al. IIRR ’09)



Performance guarantees dresentate

« Given a set function (e.g. discounted capture probability)
. Submodular if:

ACB=FAUC)—F(A)>F(BUC)-F(B)
« Nondecreasing if:

AC B = F(A) < F(B)

1

Reward received

0 1 P 3
Robotic searchers



Performance guarantees oot

« Theorem: Average-case search optimizes a
nondecreasing, submodular set function

« This means: Implicit coordination yields a

performance guarantee (over the horizon)
F(AS) > £ F(A7)

—

Reward received
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Underwater search simulations s

. Simulated island and harbor environments

« AUVs must locate a target at a fixed depth

« Each robot plans using its current belief

- Communication through acoustic channel

- Allows for “opportunistic” belief merging

Santa Barbara island: 4 km x4 km Long beach harbor: 11 kmx 8 km 18



Underwater search video
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Underwater search results Q&S

« Perfect communication: unrealistic baseline

« Continual connectivity: conservative planning for full communication

« Proposed method: implicit coordination with data fusion

Santa Barbara island: 4 km x 4 km Long beach harbor: 11 km x 8 km
L E E 4 4 4 30 L L 4 4 T T
ower | ¢ Perfect communication | I R Perfect communication
better — 35- 1 Continual Connectivity 11 & o5 | Continual Connectivity ||
3l N —— Proposed method —— Proposed method
20
2.5 \\
2 AN 15

o N

Average capture time (hours
Average capture time (hours)
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Number of AUVs (moving 5 km/hr) Number of AUVs (moving 5 km/hr)

Each data point averaged over 200 simulations 20
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Example domain: exploration S i

Occupied Space Rebot Curent Position

Frontier

. Finds open cells next
to unknown cells

(Yamauchi ‘97, Burgard et al. '00) Open Space
Frontier

- Uses blob detection to S =7 B
identify frontier regions  nown space R

*Taken from robotfrontier.com

. Assigns robot to
explore nearest
frontier region

. Alternatives: TSP, ‘ b
market-based, etc. 5

& |
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State machine L

. Coordinates robots
. Robust to unreliable
communication

. Considers limited art ﬁ

battery life

. Add additional states
for “sacrifice” and
“relay” capabilities
(Cesare et al. '15)
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Autonomous quadcopter mapping 8RS

.4

« Two custom quadcopter UAVs mapping a
building
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(Cesare et al., ICRA 2015)
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Example domain: UAV package delivery o e

« Increasing popularity of delivery
drones: UPS, Amazon, etc.

« Dense UAV traffic in cluttered
urban environment

« No current framework for large
scale coordination

24



A Cross-Section of the Airspace s

. Automated UAV traffic

management A
. Challenges:
N th hf fd ‘ \
- Narrow thoroughfares of dense \
traffic ‘\ £d
- Heterogeneous UAVs \\\

- Dynamic obstacle landscape

.« Goals A

- Minimize conflict occurrences
- Avoid cascading effects

- Maintain throughput 25



Multiagent UAV Traffic Management (UTM) Qo rcoenaiass
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A Hierarchical Approach S

Sector Agents
Define cost of travel in each sector J

according to current UAV density

Sector-level planner J

Plans across sector cost graph

Plans across obstacle map according to

Low-level planner
sector traversal plan J
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. Learn the cost of travel to apply to

UAVSs in the sector

« Neural network control

- Inputs: UAV counts in sector

. Separate into traffic types, e.g.
heading, priority, platform etc.

- Outputs: Cost of through-sector
travel for each traffic type

« Cooperative coevolution to learn

NN weights

- Fitness value: number of conflicts

28



Simulation Experiments Oregon State

« Urban airspace A
4
— 256%256 cell map of San 2t p
Francisco ,/ \ g
. ngn Sy ‘
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. . . AN R
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A 4
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Learning Results: Total Conflicts o ey

Conflicts
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Team performance over 100
learning epochs

Averaged over 20 trials

16% reduction in total system

conflicts
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Learning Results; Congestion Reduction §reaR1as

Linear Cost Fitness Function

Random initialized sector costs Learned sector costs

(Rebhuhn et al. IROS 2015, to appear)
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Multirobot cooperation  reaemae

o Future directions

- Resource-aware
coordination

. System degrades gracefully
as computation and
communication decreases

« Scalability to large scale
systems

- Operator-driven objectives

« Human selects priority of
objectives

« Reduce cognitive load on
operator

32



Questions?  Dreganstate

Geoffrey A. Hollinger

Robotic Decision Making Laboratory
geoff.hollinger@oregonstate.edu
http://research.engr.oregonstate.edu/rdml/
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Multi-UAV Exploration  Oregontate

. Can use other =
exploration techniques *© | ||| :
with state machine on
top ,

. Improvements range e il ‘ i
from 5% to 18% L T e

(c) Complex Environment. 4 robots (d) Complex Environment, 4 robots
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Average of 200 simulation runs, with random start points.
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