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Why are multirobot problems hard? 

�  Choices increase drastically with more robots 
� Tasks require coordination between robots 
�  Joint action-space grows with number of robots 
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How can we solve multirobot problems? 

l  Centralized solver (Smith et al. ‘05, Kurniawati et al. ‘08) 

-  One leader plans for the entire team 
-  The leader tells everyone else what to do 

Advantages 
�  Considers all 

possible 
strategies 

Disadvantages 
�  High computation 

�  Single-point 
failure 
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l  Team coordination (Gerkey et al. ‘05) 

-  Robots dynamically form and disband teams 
-  Team leader plans for all robots on the team 

Advantages 
�  Somewhat 

robust 

�  Relatively 
decentralized 

Disadvantages 
�  Can still require 

high computation 

�  Need to determine 
when to form 
teams 

How can we solve multirobot problems? 
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l  Implicit coordination (Grocholsky ’02, Hollinger et al. ‘08) 

-  Each robot plans only its own actions 
-  Robots communicate information to improve their 

actions 
l  Examples:  plans, measurements, target estimation 

Advantages 
�  Scalable 

�  Robust 

�  Decentralized 

�  Little 
communication 

Disadvantages 
�  May perform 

suboptimally 

How can we solve multirobot problems? 
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l  Market-based coordination (Kalra et al. ‘05, Zlot et al. ‘06) 

-  Each robot plans for itself and for some 
teammates 

-  Robots auction control actions to other robots 

Advantages 
�  Relatively 

scalable 

�  Robust 

�  Decentralized 

Disadvantages 
�  Higher 

communication 

�  Need to determine 
when to auction 

How can we solve multirobot problems? 
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Why decentralize? 
l  Centralized solvers 

-  Single entity determines allocations 
-  Requires reliable communication 

l  Decentralized solvers 
-  Does not require central arbiter 
-  Possible to generate ad hoc centralization for clique 



9 

Multirobot optimization 
l  Problem statement: given K robots with limited 

battery life Bk, efficiently perform a task in a 
bounded environment W 

l  Assumptions: 
-  Bounded planar workspace W 
-  Workspace is divided into free regions Wfree and 

obstacle regions Wobs 
-  Workspace partition into obstacle and free could be 

initially unknown 
-  The robots are equipped with a sensor that allows 

them to observe the environment with limited range 
and visibility radius 
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Optimization Representation 

l  Multirobot coordination can be cast as an 
optimization of the form 

l  R(P) is a reward metric related to the task 
completed by a set of trajectories P 

l  |Pk| is the battery consumed by a trajectory 
Pk for robot k 

!∗ = !"#$!%!!! ! !!. !. !! < !!!!"#!!""!!,! 
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Reward Metrics 
l  Search 

-  Probabilistic: maximize probability of capturing one or 
more targets 

-  Guaranteed: search environment such that worst-case 
target could not escape 

l  Exploration 
-  Observe as much of the environment as possible 

l  Mapping 
-  Maximize map accuracy in limited time 

l  Average accuracy 
l  Worst-case accuracy 

l  Note: objectives may not be aligned (i.e., 
maximizing one may not maximize another) 
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Where are the targets of interest? 
Are there interesting events occurring? 
 

Example domain: Multi-robot search 

l  Multiple vehicles gather information about the environment 
-  Sharing information during the mission can improve performance 

 (e.g., state, observations, plans) 
-  In many cases communication is limited by configuration 
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Modeling the search problem 
l  Discounted reward metric: 

Target 
path 

Searcher 
paths 

Discount 
factor 

Capture 
time 
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Modeling the search problem 
l  Discounted reward metric: 
l  Probabilistic motion model (average-case) 
 

 

l  Adversarial model (worst-case)  
 



15 

Search optimization 

�  Receding-horizon planning 
� Examine paths within fixed depth 
� Replan 

�  Implicit coordination 
� For all robots 

�  Plan and share path with others 
�  Others assume shared paths fixed 

�  Linear scalability in team size 

�  Maximize discounted probability of capture 
A⇤

= argmax

A

X

Y 2 
Pr(Y )FY (A) where FY (A) = �t

(Hollinger et al. IJRR ’09) 
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Performance guarantees 
l  Given a set function (e.g. discounted capture probability) 
l  Submodular if: 

l  Nondecreasing if: 
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Performance guarantees 
l  Theorem: Average-case search optimizes a 

nondecreasing, submodular set function 

l  This means: Implicit coordination yields a 
performance guarantee (over the horizon) 
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(Hollinger et al. IJRR ’09) 
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Underwater search simulations 
l  Simulated island and harbor environments 

l  AUVs must locate a target at a fixed depth 

l  Each robot plans using its current belief 
-  Communication through acoustic channel 

-  Allows for “opportunistic” belief merging 

Santa Barbara island: 4 km x 4 km Long beach harbor: 11 km x 8 km 
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Underwater search video 
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Underwater search results 
l  Perfect communication: unrealistic baseline 

l  Continual connectivity: conservative planning for full communication 

l  Proposed method: implicit coordination with data fusion 
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●  Finds open cells next 
to unknown cells 
(Yamauchi ’97, Burgard et al. ’00) 

●  Uses blob detection to 
identify frontier regions 

●  Assigns robot to 
explore nearest 
frontier region 
●  Alternatives: TSP, 

market-based, etc. 

*Taken	  from	  robo.ron/er.com	  

Example domain: exploration 
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●  Coordinates robots 
●  Robust to unreliable 

communication 
●  Considers limited 

battery life 
●  Add additional states 

for “sacrifice” and 
“relay” capabilities 
(Cesare et al. ’15) 

State machine 
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Autonomous quadcopter mapping 

l  Two custom quadcopter UAVs mapping a 
building 

(Cesare	  et	  al.,	  ICRA	  2015)	  
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Example domain: UAV package delivery 

l  Increasing popularity of delivery 
drones: UPS, Amazon, etc. 

l  Dense UAV traffic in cluttered 
urban environment 

l  No current framework for large 
scale coordination 
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A Cross-Section of the Airspace 

l  Automated UAV traffic 
management 

l  Challenges: 

-  Narrow thoroughfares of dense 
traffic 

-  Heterogeneous UAVs 

-  Dynamic obstacle landscape 

l  Goals 

-  Minimize conflict occurrences 

-  Avoid cascading effects 

-  Maintain throughput 
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100m 

Multiagent UAV Traffic Management (UTM) 

l  Divide airspace into sectors 

-  Assign single agent to manage 
each sector 

l  Multiagent team: 

-  Agents individually learn 
policy for assigning sector 
traversal costs 

-  Reward is total number of 
conflicts in global system 
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A Hierarchical Approach 

Sector Agents 

UAVs 

Define cost of travel in each sector 
according to current UAV density 

Plans across sector cost graph 
Sector-level planner 

Plans across obstacle map according to 
sector traversal plan 

Low-level planner 
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UTM Learning Agents 
l  Learn the cost of travel to apply to 

UAVs in the sector 

l  Neural network control 

-  Inputs: UAV counts in sector 

l  Separate into traffic types, e.g. 
heading, priority, platform etc. 

-  Outputs: Cost of through-sector 
travel for each traffic type 

l  Cooperative coevolution to learn 
NN weights 

-  Fitness value: number of conflicts 



29 

Simulation Experiments 
•  Urban airspace 

−  256×256 cell map of San 
Francisco 

−  15 Voronoi partitions 
•  Fitness calculation 

−  Linear: no. conflicts at each 
cell summed 

•  UAVs 
−  100 UAVs in airspace during 

single learning epoch 
−  A* planning at both sector- 

and low-level 
−  Conflict radius: 2 cells  

(approx. 4m) 

100m 
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Learning Results: Total Conflicts 

l  Team performance over 100 
learning epochs 

l  Averaged over 20 trials 

l  16% reduction in total system 
conflicts 
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Learning Results: Congestion Reduction 

Random initialized sector costs Learned sector costs 

Linear Cost Fitness Function 

(Rebhuhn	  et	  al.	  IROS	  2015,	  to	  appear)	  
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Multirobot cooperation 

l  Future directions 
-  Resource-aware 

coordination 
l  System degrades gracefully 

as computation and 
communication decreases 

l  Scalability to large scale 
systems 

-  Operator-driven objectives 
l  Human selects priority of 

objectives 
l  Reduce cognitive load on 

operator 
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Questions? 
Geoffrey A. Hollinger 

Robotic Decision Making Laboratory 
geoff.hollinger@oregonstate.edu 

http://research.engr.oregonstate.edu/rdml/ 

Funding for this work: Office of Naval Research,  
National Science Foundation, and NASA 
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●  Can use other 
exploration techniques 
with state machine on 
top 

●  Improvements range 
from 5% to 18% 

●  Better results with a 
larger team 

Average	  of	  200	  simula/on	  runs,	  with	  random	  start	  points.	  

Multi-UAV Exploration 


