

Motion Planning in Multi-Robot Systems

Kostas E. Bekris
Department of Computer Science
Rutgers University
07/16/2015

Note to Online Reader

- It is difficult to provide a comprehensive coverage of all motion planning methods for multi-robot systems
- An effort was made to cover foundational work in the case of centralized solutions
- For decentralized solutions, the presentation highlights methods that the author has utilized in his research
- But the version of the presentation on the TC's website can potentially be a live document that gets updated given your feedback
 - So, if you believe that a certain line of work should be highlighted here please contact Kostas Bekris (kostas.bekris @ cs.rutgers.edu)

Proposed Classification

Key question:

- What information does an approach access?
 - Global: Centralized approaches
 - Local: Decentralized approaches

Important In & Beyond Robotics

Multiple Direct Applications (including centralized methods)

- Warehouse management
- Transportation applications
- Controlling teams of robots in structured environments
- Digital entertainment
- Product assembly
- Combinatorial puzzles and pure scientific curiosity

Kiva Systems/Amazon

"Cossacks: Back to War" Game

Centralized Approaches

Key questions for centralized approaches:

- What is the space that the method searches over for a solution?
 - Composite state space of all robots: Coupled approaches
 - Individual robot conf. space and coordination: Decoupled approaches
- What kind of guarantees can be provided?
 - Safety, Completeness, Optimality

Decentralized Approaches

Key questions for decentralized approaches:

- How does a local method access information about other robots?
 - Sensing or communication
 - Inference or shared information
- What kind of properties can be provided?
 - Collision Avoidance, Deadlock/Livelock Avoidance

Centralized – Coupled Planning

Key features of Coupled Approaches

• Consider the composite state space

$$X = C^1 \times C^2 \times \ldots \times C^m$$

- Search can be performed with standard single-robot motion planning methods in X, e.g.,
 - combinatorial planners in low-dimensional cases,
 - sampling-based planners, [Svestka and Overmars, 1998]
 - optimization methods,
 - search (A*) etc.
- Then, it is possible to achieve the same properties as the algorithm achieves in the single-robot case

But... computational issues!

Complexity Results

- A complete algorithm [Schwartz and Sharir, 1983]
 - Coordinating planar disk-robots: Exponential complexity in the number of robots
- Exponential running time in some cases is unavoidable
 - Rectangular robots in rectangular region: PSPACE-hard [Hopkroft, Schwartz and Sharir, 1984]
 - NP-hard for disc robots in a simple polygon workspace [Spirakis, Yap 1984]
 - For 2-3 robots, reduce number of DOFs but computing paths where the robots maintain contact [Aronov et al. 1999]

Unlabeled Case

- A variation of the problem with interchangeable robots [Kloder and Hutchinson 2005]
 - Group of identical robots that need to reach a set of target positions
- Could it be that it is an easier challenge?
 - No, unit-square robots moving amidst polygonal obstacles and other variations are PSPACE-hard [Solovey, Halperin RSS 2015]

- Study of the disc robot case among polygonal obstacles:
 - Efficient solution when aiming for minimizing the longest robot path length [Turpin, Michael and Kumar 2013]
 - The space must be star-shaped surrounding each start and target position
 - This has been relaxed to less restrictive sparsity requirement [Adler et al. 2014]
 - Efficient algorithm also in the case of minimizing total path length [Solovey et al. RSS 2015]

Centralized – Decoupled Planning

- First compute individual path for each robot
 - i.e., in the corresponding configuration space Ci
- Then consider plan interactions to produce a solution that is (hopefully) valid in the composite space X

 Decoupled
- When successful...
 - They solve problems orders of magnitude faster than coupled alternatives!
- But when the pair-wise interactions are considered, the available choices are already constrained...
 - i.e., no completeness or optimality
 guarantees in the general case

Prioritized Planning

- Compute paths sequentially for different agents in order of priority
 - Higher-priority agents are considered moving obstacles for lower-priority one [Erdmann and Lozano-Perez, 1986]

- Choice of priorities has significant impact on solution quality [van den Berg and Overmars, 2005]
- Searching the space of priorities can improve performance [Bennewitz, Burgard, Thrun 2002]

Incremental methods:

- plan path for a robot, considering the paths of a subset of the other agents
- a plan-merging scheme coordinates actions to detect deadlocks
- when a circular dependency is detected, a couple planner is invoked

Velocity Tuning

Two step approach:

- Fix paths for all agents and then in order of priority apply velocity tuning
 - i.e., select velocity for low priority agent along path so as to avoid collisions
 - treat high-priority agents as dynamic obstacles [Kant, Zucker 1986]

Idea relates to coordination diagrams which were developed for dual-arm manipulation: [O'Donnell, Lozano-Perez 1989]

[Simeon, Leroy, Laumond 2002]

Extended to systems with more complex dynamics [Peng and Akell 2005]

Example Use of Velocity Tuning

Scheduling Pick-and-Place Tasks for Dual-arm Manipulators using Incremental Search on Coordination Diagrams

HUMANOIDS 2015 Video Submission

Andrew Kimmel, Athanasios Krontiris, Kostas Bekris Rutgers University

Fixed Roadmaps

- More flexible solutions if the robots are not constrained on individual paths but on entire roadmaps [Ghrist, O'Kane and LaValle 2005]
 - Give rise to interesting coordination spaces (cube complexes)
 - Makes more sense to aim for Pareto optimal solutions

- Similar idea:
 - Try to compute multiple diverse paths first for each agent [Green, Kelly 2007] [Knepper, Mason 2009] [Voss, Moll, Kavraki 2015]
 - Or make sure you are covering many different homotopic classes [Bhattacharya, Kumar, Likhachev 2010]

Centralized Discrete Case and New Insights

Difficult even in Discrete Domains

Remove the complexity of reasoning about the geometry

- Employ a graph-based abstraction

The problem is studied in many different communities under different names:

- Multi-agent Planning
- Cooperative Path Finding
- Pebble Motion on a Graph
- Multi-agent Navigation

Finding optimal solutions is an NP-complete problem [Ratner and Warmuth, 1986]

Fast but Incomplete Methods

- Computationally efficient.
- Decoupled framework.
- No guarantees for
 - Completeness.
 - Path Quality.
- Dynamic prioritization and windowed search [Silver 2005]
- Spatial abstraction with heuristic computation [Sturtevant and Buro 2006]
- Use of a flow network with replanning [Wang and Botea 2008]
- Smart direction maps that learns movements [Jansen and Sturtevant 2008]

[Silver 2005]

[Sturtevant and Buro 2006]

[Wang and Botea 2008]

[Jansen and Sturtevant 2008]

Suboptimal but Complete Methods

- Still efficient: polynomial running time.
- They will find a solution if one exists.
- They do not provide optimal paths.
- Specific topologies
 [Peasgood et al. 2008][Surynek 2009]
- Slideable grid-based problems
 [Wang and Botea 2011]
- Complete on trees [Khorshid et al. 2011]
- "Push and Swap": Polynomial-time solution on graphs with two empty vertices
 [Luna and Bekris 2011]

"Push and Swap" Software Package Available: Scales up to Thousands of Agents

[Peasgood, Clark et al. 2008]

[Wang and Botea 2011]

[Surynek 2009]

[Khorshid et al. 2011]

[Luna and Bekris 2011]

Foundations in Algorithmic Theory

• Polynomial time feasibility test algorithm for graphs graphs [Kornhauser et al.

• Linear time feasibility algorithm on trees [Auletta et al. 1999]

• Linear algorithm for graphs with two blanks [Goraly and Hassin 2010]

Interesting Disparity

Evaluating Feasibility

Linear Time!

Finding Suboptimal Paths

Cubic Time

[Krontiris, Luna, Bekris SoCS '13]

[Yu, '13]

Extension to simultaneous motion
[Yu, Rus, WAFR '14]

Finding an Optimal Path

NP-hard

New Optimal Methods

- Provide path quality guarantees.
- Coupled framework often A*-based.
- Great recent progress but... scalability conditional to the hardness of the problem
- Optimal decoupling [van den Berg et al. RSS 2009]
- Working on independent subproblems [Standley 2010, Standley and Korf 2011]
- Subdimensional expansion search space [Wagner and Choset 2011, 2013]
- Conflict-based Search [Sharon, Stern, Sturtevant 2012, 2015]
- Cast challenge to another NP-hard problem
 - Linear Programming [Yu, LaValle 2013]
 - Or other formal methods [Erdem et al. 2013, Surynek 2012]

[Wagner and Choset 2013]

[Standley 2010, Standley and Korf 2011]

Back to Continuous Problems

• Integrating sampling-based algorithms with pebble graph solvers to address continuous challenges [Solovey and Halperin WAFR 12]

Discrete RRT: Integrated the ideas of M* with RRT for solving continuous problems [Solovey, Salzman and Halperin 2014]

 We have recently transferred the idea in the context of rearranging multiple movable bodies with a manipulator

[Krontiris, Shome, Dobson, Kimmel Bekris Humanoids 2014] [Krontiris, Bekris RSS 2015]

Rearranging Similar Objects With A Manipulator: a non-monotone benchmark

A. Krontiris, R. Shome, A Dobson, A Kimmel, and KE Bekris.
IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS) 2014, Madrid, Spain.

PRACSYS lab pracsyslab.org

[Krontiris, Bekris RSS 2015]

Multi-Arm Manipulation

[Koga, Latombe 1994] [Cohen, Philips, Likhachev RSS 2014] [Dobson, Bekris IROS 2015]

Planning handoffs and stable grasps

Decentralized Approaches

Deconfliction for First-order Systems

It is possible to employ reactive collision avoidance methods

 No need to employ communication

e.g. Reciprocal Velocity
Obstacles

[van den Berg, Lin, Manocha '08]

Deconfliction for First-order Systems

Reciprocal Velocity Obstacles [van den Berg, Lin, Manocha '08]

Extended to address team coherence constraints

[Kimmel, Bekris AAMAS '12]

Deadlock Issues

- A prototypical motion coordination challenge
 - Agent A must decide whether to move down Corridor 1 or 2.
 - Similarly, Agent B will need to decide the same.

- Assume employment of RVOs for safety purposes
- How can we achieve progress?
 - No communication, only observe the other agents

Motion Coordination Challenge

For each agent, the cost of each action α is defined as $C(\alpha)$, the length of the corresponding path to the goal.

Interaction Costs

Let I_i represent the interaction cost for action a_i given the observed state of the other agent

• Represents whether the other agent is along the corresponding path

Communication-less Motion Coordination

2 Greedy Agents

Corridor Environment

The red line is the solution trajectory.

The light blue lines are the Velocity Obstacles.

Deconfliction for First-Order Systems

Deconfliction for First-order Systems

30 Airplanes

[Krontiris, Bekris IROS '11]

Safety Concerns (ICS)

- Safety becomes a concern in decentralized planning
 - Independently plan paths that are pairwise collision-free
- For systems with dynamics, e.g., inertia
 - Also avoid inevitable collision states

- How can communication help?
 - i.e., couple choices in terms of safety considerations

[Bekris, Tsianos, Kavraki '07,'09]

Coordination

If the requirements are satisfied: Safety is guaranteed

How can we implement the requirements for coordination?

Alternative solutions:

1. Global priority scheme

Problem: Low priority vehicles do not have time to compute a solution Effect: Vehicles result often in contingency plans

2. Cooperative Action Selection

Can the planning framework be integrated with a balanced, scalable coordination scheme and guarantee safety?

Selection of Contingencies

Problem of priorities:

Frequent selection of contingency plans

 Casted the problem as Distributed Constrained Optimization and used a message-passing algorithm (belief propagation based)

	Rooms		Labyrinth	
# Vehicles	16	32	16	32
Prioritized	3.61 %	24.5 %	1.35 %	8.42 %
Max-plus	0.98 %	2.26 %	3.04 %	4.84 %

Asynchronous Operation

[Bekris, Grady, Moll, Kavraki - IJRR '12]

- Safety challenge:
 - Guarantee that there is a safe path π^{i}_{*} to select in every planning cycle

- Challenges vs synchronous operation:
 - States cannot be accompanied by timestamps
 - No guarantee messages arrive in order

Motion Planning Approaches

http://www.pracsyslab.org

Push and Swap approach

Andrew Kimmel.

- Communication-less
 Motion Coordination
- Dual-arm scheduling

Thank you for your attention!

Primary Contributors

- Deconfliction approach
- Pebble graph solvers
- Manipulation applications

Our research efforts have been supported by:

- the National Science Foundation (NSF),
- the National Aeronautics and Space Administration (NASA),
- the Department of Defense (ONR & DoD TARDEC),