Control of the Physical Interaction in/with Multi-Robot Systems

Dongjun Lee
Interactive & Networked Robotics Laboratory
Department of Mechanical & Aerospace Engineering
Seoul National University

Multi-Robot Physical Interaction

Kose et al., U. Albertz
K. Konoge et al., Tokyo Tech
D. Phamino et al., EPFL
D. Rui et al., CMC
F. Caccavale et al., Mobiacton, 2012
V. Kumar et al., UTexas
J. Dai et al., King's College London
Categorization

Decentralized
- Local control and communication
- Behavioral control, swarming, etc.
- Large number of robots
- Loose mechanical coherency

Centralized
- Central control and communication
- Precise mechanical coherency
- Relatively small number of robots
- Single robot or multiple robots more or less the same

Issues of Their Own

Decentralized
- Desired behavior only from local interaction
- Partial connectivity and latency
- Collision avoidance vs separation prevention
- Provable emergent behavior
- Consensus/synchronization on graph

Centralized
- Central communication and control expensive
- Precise and tight coordination
- High performance from real robots
- Real robots w/ complex dynamics, constraints, etc.
- Hybrid position/force control, behavior decomposition
Content

- Decentralized vs Centralized
- Decentralized control of physical interaction
 - Overview
 - Multi-UAV teleoperation
 - Multi-user haptic interaction
- Centralized control of physical interaction
 - Overview
 - Multiple mobile manipulators
 - Multiple quadrotor-manipulator systems
 - Spherically-connected multi-quadrotor (SmQT) systems
- Conclusion and future directions

Decentralized Physical Interaction Control

- Simple first-order consensus equation:
 \[\dot{x}_i = -\sum_{j \in \mathcal{N}_i} w_{ij}(x_i - x_j) \]

where \(\mathcal{N}_i \in \mathcal{V} \) is information neighbor on graph \(G = (\mathcal{V}, \mathcal{E}, \mathcal{W}) \).

- Each robot abstracted by a simple dynamics (e.g., point mass in \(\mathbb{R}^3 \))
- System communication/control restricted by the topology of graph \(G \)
- Closed-loop dynamics:
 \[\ddot{x} = -Lx, \quad x = [x_1, x_2, \ldots, x_n] \in \mathbb{R}^{3n} \]

where \(L \) is Laplacian matrix with \(\lambda_1(L) \geq 0 \) with 0 being simple iff \(G \) has a spanning tree (i.e., marginally stable).
Decentralized Physical Interaction Control

- Total control law = collective control + local control

\[\dot{x}_i = u_i(t) - \sum_{j \in N_i} w_{ij}(x_i - x_j) \Rightarrow \dot{x} = -Lx + u \]

- \(u_i(t) \in \mathbb{R}^3 \): collective control for some agents to drive whole group (e.g., human command, virtual leader)

- \(w_{ij}(||x_i - x_j||) \): local control to maintain coherency while avoiding collision on graph \(G \)

- How to maintain local behavior (e.g., avoidance, coherency) even with unpredictable \(u_i(t) \)? (cf. string stability, Swaroop et al, TAC96)

- Collective control \(u_i(t) \) often cognitive, whereas local control \(w_{ij}(||x_i - x_j||) \) typically mechanical

Pseudo physical interaction \(\Leftrightarrow \) indirectly via motion control

Multi-UAV Teleoperation

- issues/challenges:
 - single user can manage only small-DOF
 - information-flow among UAVs should be distributed, yet, no collision/separation under arbitrary human tele-command

* semi-autonomous teleoperation
 = teleoperation + local autonomous control

1. UAV control layer (bksteping):
 - under-actuated UAV tracks its own kinematic virtual point (VP)

2. VP control layer:
 - NVPs as a deformable flying object on \(G \)
 - deforms to obstacles w/o VP-VP separation or VP-obstacle/VP-VP collisions

3. teleoperation layer:
 - PSPM for flexible/stable teleoperation
Distributed VP Control Layer

- render N kinematic VPs as a N-nodes deformable flying object with artificial potentials distributed over connectivity graph G
- same architecture can be used for interaction with real objects

kinematic VP

\[
\dot{p}_i(t) := u_i^t + u_i^o
\]

prop. 1: Suppose \(\|u_i^t\| \leq \bar{u} \forall t \geq 0 \), and, if \(V(t) \geq M, \) \(\exists \) at least one VP, s.t.,

\[
\sum_{j \in \mathcal{N}_i} \frac{\partial \phi_i}{\partial p_i} + \sum_{r \in \mathcal{O}_i} \frac{\partial \phi_r}{\partial p_i} \geq \frac{\sqrt{N_i + \delta_{st}}}{2} \bar{u} \quad \delta_{st} = 1 \text{ if } s \in N_t; \quad \delta_{st} = 0 \text{ if } s \notin N_t
\]

Then, all VPs are stable (i.e., bounded \dot{p}_i); no VP-VP/VP-obstacle collisions; and no VP-VP separations.

\[
\frac{dV}{dt} = \sum_{i=1}^{N} \left(\sum_{j \in \mathcal{N}_i} \frac{\partial \phi_i}{\partial p_j} + \sum_{r \in \mathcal{O}_i} \frac{\partial \phi_r}{\partial p_j} \right) \dot{p}_i = \sum_{i=1}^{N} W_i^T(-W_i + u_i^o) \leq \sum_{i=1}^{N} (-||W_i||^2 + \delta_{st}||W_i||^2) \\
\leq -\left(||W_i|| - \frac{\delta_{st} \bar{u}}{2}\right)^2 + N_i \frac{\bar{u}^2}{4} \leq 0 \quad \rightarrow V(t) \leq M
\]

- only one VP needs to detect $V(t) \geq M$, w/ potential not exactly aligned
- stable for any bounded teleoperation command $u_i^t \Leftarrow$ guaranteed by PSPM
Experiments

- Distributed multi-UAV teleoperation: flying over obstacle
- Distributed multi-UAV teleoperation: adapt to narrow passage

* Distributed multi-UAV teleoperation: flying over obstacle w/o inter-UAV collision/separation on graph G under arbitrary human command
* Distributed multi-UAV teleoperation: adapt to narrow passage w/o inter-UAV collision/separation on graph G under arbitrary human command

- Haptic teleoperation of UAV
- Multi-modal semi-autonomous teleoperation of UAV/VG

- Open cap using UAV teleoperation with haptic feedback and communication delay
- Multi-modal semi-autonomous teleoperation crucial for complex real-world applications

* Joint work with Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Multiuser Haptic Interaction

- Multiple haptic devices (i.e., robots) interconnected over graph G
- Each robot has "real" physical interaction with human
- Source of physical instability: human-device interaction, information delay
- Consensus for consistency (i.e., coordination) and passivity for stability
Discrete-Time Passivity

Suppose VO synchronization gains B_i, K_i are set to be:

$$B_i \geq \sum_{j \in N_i} \frac{N_{ij} + N_{ji}}{2} \max_{k}[T_j(k)] K_{ij} \quad \forall \text{ users } i=1,...,N$$

Then, total p2p architecture is \textbf{N-port discrete-time passive}: \(\forall M \geq 0 \),

$$\sum_{k=0}^{\infty} \sum_{i=1}^{N} Y^T(k) f_i(k) T_i(k) \geq V(M + 1) - V(0) + \sum_{k=0}^{\infty} \sum_{i=1}^{N} \|v_i(k)\|^2 T_i(k)$$

- non-iterative passive integrator [DSCCo8]
- passive synchronization [ACC10]
- extend [Lee&SpongTRO06] to discrete domain
- robust stability for \textit{any} devices \& passive users
- not require specific kind/number of device/user
 \(\rightarrow \) portability/scalability for heterogeneous devices/users

Local Copy Synchronization

If user forces $f_i(k) \rightarrow 0$ and VO damping B is positive-definite, $v_i(k) \rightarrow 0$ and VO local copies will be \textbf{configuration-synchronized} s.t.

$$[\mathcal{P} + I_{N \times N} \otimes K_0] \left(x(k) - 1_N \otimes x_d \right) \rightarrow 0$$

- all the VO local copies' configurations $x(k) = [x_1(k); x_2(k); ...; x_N(k)] \in \mathbb{R}^{3N}$ converge to stable equilibria $x(k) \rightarrow \text{null}(\mathcal{P}) \cap \text{null}(I_N \otimes K)$
- VO synchronization guaranteed with $\text{null}(\mathcal{P}) = \{x_i = x_j = d, d \in \mathbb{R}^3\}$
 if G is \textit{connected} [Huang&LeeACC10]
- K_{int}: VO internal shape
- K_{ext}: symmetry breaking
 e.g. if $K_{\text{ext}} = \alpha_i x_i \rightarrow \text{null}(I_N \otimes c_i, c \in \mathbb{R})$
Which (connected) network topology should we choose?
→ **fastest mixing graph** \(G_{\text{opt}} \) from the set of all candidates graphs \(G_i \)

Information mixing model:

\[
p_i(k+1) = \left(\sum_{j \in N_i} K_{ij} \right)^{-1} \sum_{j \in N_i} K_{ij} p_j(k+1 - N_{ij})
\]

- user \(i \)'s information state
- normalization
- \(K_{ij} \): information mixing strength
- communication delay

Experiments

- multiuser haptic interaction: best graph topology
- multiuser haptic interaction: worst graph topology
- multiuser finger-based haptic interaction over the Internet
Centralized Physical Interaction Control

- Single robot as kinematic or dynamic system:
 \[\dot{\mathbf{x}} = J(q)\dot{q}, \quad M(q)\ddot{q} + C(q, \dot{q})\dot{q} = \tau + f \]

- If stack-up, multirobot system the same as single robot system:
 \[\dot{x} = J(q)\dot{q}, \quad M(q)\ddot{q} + C(q, \dot{q})\dot{q} = \tau + f \]
 \(w/ x = [x_1, x_2, ..., x_n], \quad q = [q_1, q_2, ..., q_n], \quad \tau = [\tau_1, \tau_2, ..., \tau_n], \quad f = [f_1, f_2, ..., f_n], \quad J = \text{diag}[J_1, J_2, ..., J_n], \quad M = \text{diag}[M_1, M_2, ..., M_n], \quad C = \text{diag}[C_1, C_2, ..., C_n] \)

- Null-space based control: with two tasks \(r_1 = f_1(q), \quad r_2 = f_2(q), \) \(r_1 \) of higher priority,
 \[\dot{q} = J_1^T r_1 + (J_2 P_1)^+ [r_2 - J_2 \dot{q}_1] \]
 where \(P_1 \) is projection to null-space of \(J_1 \).

- Hybrid position/force control: with the task specified by holonomic constraint \(h(q) = c \) (or \(q = f(\phi), \dot{\phi} = J(\phi)\phi) \),
 \[\tau = M(q)J(\phi)(\ddot{\phi}_4 - K_v \dot{\phi} - K_p \phi) + [C(q, \dot{q})J(\phi) + M(q)J(\phi)]\dot{\phi} \]
 \[+ g(q) - f + A^T(q)[\lambda - K_f \int (\lambda - \lambda_d)dt] \]

Centralized Physical Interaction Control

- Kinematic or dynamic modeling of multirobot system:
 \[\dot{x} = J(q)\dot{q}, \quad M(q)\ddot{q} + C(q, \dot{q})\dot{q} = \tau + f \]

- Null-space control, hybrid control \(\Rightarrow \) behavior decomposition

- Multirobot with centralized control \(\Rightarrow \) more or less same as single robot

- Then, what is so unique about multirobot system?
 - Large-DOF \(\Rightarrow \) difficult to control all the same
 - Large-DOF \(\Rightarrow \) richer behavioral decomposition possible/demanded
 - As compared to a single robot, real multirobot would likely have
 * More complex dynamics (e.g., platform-arm system)
 * More abundance of constraints (e.g., wheels, under-actuation)
 * Heterogeneity among the robots

- Behavior decomposition \(w/ \) complex dynamics, constraint, heterogeneity
Multirobot Fixture-Less Grasping

- total-DOF = 15
- three behaviors:
 1) **grasping**
 2) grasped object **maneuver**
 3) **internal** motion (e.g., avoidance, reconfiguration)

→ decomposition into these three behaviors even with nonholonomic constraints?

Behavior Decomposition and Control

* hierarchical control
 = simultaneous/separate control of each behavioral mode autonomously or teleoperatedly

\[\dot{q} = \lambda_k \xi^k + (u_x \xi_x + u_y \xi_y) + \sum_{i=1}^{3} \alpha_i \xi_i^i + \sum_{i=1}^{3} \beta_i \xi_i^i + \sum_{i=1}^{3} 0 \cdot \xi_i^i \]

- grasping
- object maneuvering
- internal motion (avoidance, reconfiguration)

Equilibrium

\[\phi_1 = \frac{1}{2} \sin \phi_1 \]

\[\phi_1 > 0, \phi_1 < 0 \]

<table>
<thead>
<tr>
<th>(\xi_1)</th>
<th>(\phi_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(> 0)</td>
<td>(\phi \rightarrow \pi)</td>
</tr>
<tr>
<td>(< 0)</td>
<td>(\phi \rightarrow \pi)</td>
</tr>
</tbody>
</table>

Required level of intelligence

- simple autonomous
- cognitive
- autonomous, yet rich (or teleoperation?)
NPD Expression

\[
\dot{q} = \lambda_0 \dot{x} + (u_x \dot{x} + u_y \dot{y}) + \sum_{i=1}^{3} \alpha_i \dot{x}_i + \sum_{i=1}^{3} \beta_i \dot{y}_i + \sum_{k=1}^{3} 0 \cdot \dot{z}_k
\]

- **grasp regulation** \(\lambda_0 = -\frac{1}{2} \sqrt{\frac{1}{2} \frac{k}{m}} \)
- **object maneuvering:** teleoperation
- **internal motion:** autonomous (rich)
- **grasping:** simple autonomous

Simulation

- autonomous obstacle avoidance using combination of maneuver mode and internal dynamics mode
- rigid grasping enforced with no grip-holding fixture

- autonomous grasping control
- object maneuver haptic teleoperation completely decoupled from grasping behaviors

- object teleoperation with interaction force feedback
- rigid grasping maintained regardless of object interaction
Quadrotor-Manipulator System

- Dexterous aerial manipulation using quadrotor-arm system is promising.
- Quadrotor-arm dynamic coupling → dynamics formulation necessary.
- QM system dynamics very complex with 2-DOF under-actuation.
- Slow/imprecise quadrotor flying + fast/precise manipulator control.
- Reveal fundamental underlying dynamics structure; exploit it for control.

Configuration-Space Decomposition

- Tangent space decomposition
 \(q := [p; \phi; \theta] \in \mathbb{R}^n \quad r := [\phi; \theta] \in \mathbb{R}^{n+3} \)

 Choose \(h(q) := r \)

 \[\dot{q} = \begin{bmatrix} \Delta_T & \Delta_L \end{bmatrix} \nu = \begin{bmatrix} I_3 & -\frac{1}{m_L}M_{pr}(r) \\ 0 & I_{n-3} \end{bmatrix} \begin{bmatrix} \dot{p}_L \\ \dot{r} \end{bmatrix} \]

- Passive decomposition [ICRA14]

 \[M(r)\ddot{q} + C(r, \dot{r})\dot{q} + g(q) = \tau + f \]

 \[m_L\ddot{p}_L + g_L = \tau_L = \lambda R_0(\psi) \]

 \[M_E(r)\ddot{r} + C_E(r, \dot{r})\dot{r} = \tau_E \]

- QM dynamics = centroid \(p_L \)-dynamics + internal rotation \(r \)-dynamics
- \(p_L \)-dynamics = standard under-actuated quadrotor dynamics.
- \(r \)-dynamics = standard fully-actuated robot-arm dynamics.
- No inertial/gravity coupling w/ gravity only in \(p_L \)-dynamics.

⇒ Composed of completely-decoupled \(p_L \) and \(r \) dynamics on their manifolds.
⇒ Generalize rigid-body dynamics in \(\text{SE}(3) \) to floating multi-link systems.
⇒ Applicable to any vehicle-manipulator systems (e.g., ROV, space robot).
Coarse-Fine QM-System Control

- Backstepping end-effector tracking control with redundancy
 \[\tau_L(\lambda, \phi) + m_L B(r) M_{E^{-1}}(r) \tau_E = -\gamma e_p - \alpha e_L + g_L + \eta(r) + m_L [p_L - \lambda e_p - \frac{dB}{dr} r] \]

 Control redundancy: cooperative control

- Slow \(p_L \)-dynamics w/ under-actuated control \(\tau^L_2(\lambda, \phi_2) \) => coarse control
 \[\tau^L_2(\lambda, \phi_2) : = \text{LPF} \left[-\gamma e_p - \alpha e_L + g_L + \eta(r) + m_L [p_L^d - k_e e_p - \frac{\partial B}{\partial r} r] \right] - m_L \dot{\lambda} \zeta(r) \]

- Fast \(r \)-dynamics w/ fully-actuated control \(\tau_E \) => fine control
 \[m_L B M_{E^{-1}} \tau_E = -\gamma e_p - \alpha e_L + g_L + \eta(r) + m_L [p_L^d - k_e e_p - \frac{\partial B}{\partial r} r] - \tau_L(\lambda, \phi) \]

- Trajectory tracking \((e_p, e_L) \to 0\) guaranteed even with \(\tau_L \neq \tau^L_2 \).

- Latitude for \(\tau^L_2 \): arm sub-task \(\zeta(r) \Rightarrow m_L B \dot{r} \rightarrow \zeta(r) \) (e.g., impedance)

- Singularity avoidance by adapting cut-off frequency \(\omega_c(\sigma(\theta)) \) of LPF.

- Redundant manipulator control \(\tau_E \in \text{nullspace}(BM_{E^{-1}}) \):
 - Quadrotor attitude control to align \(\tau_L \rightarrow \tau^L_2 \)
 - Optimal arm posture, collision/obstacle avoidance.

QM System Control Examples

end-effector trajectory tracking

coarse-fine control

tracking-obstacle avoidance

admittance force control
Hierarchical Cooperative Control Framework

- **Object behavior design**: computes required object wrench to produce user-specific target behaviors (e.g., trajectory tracking, compliant interaction, etc.)

- **Optimal cooperative force distribution**: optimally assign contact force for each QM system to achieve the target behavior under uni-lateral/friction contact constraint.

- **Individual QM system control**: admittance force control with unknown object stiffness with coarse-fine redundancy resolution.

Object Behavior Design Layer

- **Object behavior design**: compute desired object wrench to produce user-specific behaviors (e.g., trajectory tracking, compliant interaction).

- **Object rigid-body dynamics**:

 \[
 m_o \ddot{x}_o + m_o g = \mathbf{f}_o + \mathbf{f}_{ext} \\
 I_o \ddot{\omega}_o + \omega_o \times I_o \omega_o = \tau_o + \tau_{ext} \\
 \]

- **Compute object wrench \(\mathbf{F}_o = [f_o, \tau_o] \)**, e.g., for impedance control:

 \[
 f_o = m_o g + m_o \dot{\omega}_o^2 + D(\dot{\theta}_o^d - \theta_o) + K(\theta_o^d - \theta_o) \\
 \tau_o = -\gamma \omega_o - \alpha [R_o - \dot{R}_o^d] \\
 \]
Optimal Cooperative Force Distribution Layer

- **Optimal cooperative force distribution**: optimally assign contact force of each QM system to achieve the target behavior w/o dropping the object (i.e., friction cone constraint).

- **Jacobian relation**:

 \[F_o = J_o \tilde{f}_o, \quad J_o \in \mathbb{R}^{d \times 3N} \]

 where \(\tilde{f}_o = [f_{o,1}; f_{o,2}; \ldots; f_{o,N}] \in \mathbb{R}^{3N} \) is all QM systems’ EF forces.

- **\(J_o \)** fat matrix with friction cone constraints \(\Rightarrow \) constrained optimization:

 \[
 \min_{f_{zn}} \quad \alpha_1 f_n^T f_n + \alpha_2 \tilde{f}_n^T f_n \\
 \text{subj. to} \quad F_o = J_o N f_n + J_o T f_s \\
 \sqrt{f_{s,1}^2 + f_{s,2}^2} \geq \mu f_{o,i}, \quad i = 1, 2, \ldots, N
 \]

Admittance Force Control Layer

- **Imprecise position control of quadrator \(\Rightarrow \) force control.**

- **Robot-arm likely not backdrivable \(\Rightarrow \) admittance control.**

- **Local object deformation model with unknown stiffness matrix \(K_o \):**

 \[f_{o,i} = -K_o (p_{o,i} - p_{o,i}) \]

- **Target position evolution:**

 \[\dot{p}_{o,i}^d := k_1 (f_{o,i} - f_{o,i}^d) + k_2 \int (f_{o,i} - f_{o,i}^d) dt + \dot{p}_{o,i} \]

- **Lyapunov function for admittance-like force control**

 \[V := \frac{1}{2} e_f^T e_f + \frac{1}{2} e_{\dot{f}}^T k_2 K_o e_f + e_f^T e_f + \frac{1}{2} e_{\dot{f}}^T k_0 e_{\dot{f}} \]

- **Control generation equation**

 \[
 \tau_L (\lambda, \phi) + m_L B(r) M^{-1}(r) \tau_E = -f_L m_L B M^{-1} I E + g_L \\
 + \eta(r) + m_L [\dot{p}_{o,i} - \beta \dot{e}_p] - \gamma (e_f + \epsilon \int e_f dt) - \frac{dB}{dt} \]

- (\(e_p, e_f, e_{\dot{f}} \)) ultimately bounded even w/ unknown \(K_o \) & \(\tau_L \neq 0 \).

- Slower-quadrator/faster-manipulator can be incorporated.

- Force sensing or estimator for force feedback.
Multiple Cooperative QM-System

SmQT System: Modeling
- Quadrors (off-the-shelf) attached via spherical joints
- Multiple robots as distributed rotating thrusters
- Increased payload/dexterity with over-actuation.
- Control design under range limit of spherical joints.

- Spherical joint limit constraints
 \[p_i^2 R_i^2 R_i^c \leq \cos \phi_i \geq 0 \]
 \(p_i, R_i, \phi_i \in \mathbb{R} \): joint center axis and motion range
 \(R_i = R_i^c R_i^c \in \mathbb{R}^3 \): quadrotor thrust in fixed frame
 \(R_i, R_i^c \in SO(3) \): tool and quadrotor attitude

- Tool dynamics
 \[M_i^\xi + C + G = U + F_e \]
 \(M_i^\xi \in \mathbb{R}^{6 \times 6} \): inertia matrix
 \(C(T_i, \tilde{\omega}) \in \mathbb{R}^{6\times6} \): centrifugal/Coriolis term
 \(G(T_i, \tilde{\omega}) \in \mathbb{R}^{6\times1} \): gravity
 \(F_e \in \mathbb{R}^{6\times1} \): external force
 \(\tilde{\omega} \in \mathbb{R}^3 \): tool angular velocity

- Tool control input
 \[U = \tilde{R} B \Gamma \]
 \(\Gamma := \begin{bmatrix} \Gamma_1 \\ \Gamma_2 \\ \ldots \\ \Gamma_n \end{bmatrix} \)
 \(\begin{bmatrix} \lambda_1 R_1 R_1 R_1 \\ \lambda_2 R_2 R_2 R_2 \\ \lambda_n R_n R_n R_n \end{bmatrix} \)
 \(\tilde{R} := \begin{bmatrix} R_1 & 0 & \ldots & 0 \\ 0 & I & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & R_n \end{bmatrix} \)
 \(B := \begin{bmatrix} I \\ S(r_1) \\ S(r_2) \\ \ldots \\ S(r_n) \end{bmatrix} \)
Control Allocation with Spherical Joints

- Finding control Γ_i while respecting the spherical joint constraints

$$\min_{\Gamma_1, \Gamma_2, \ldots, \Gamma_n} \frac{1}{2} \Gamma^T \Gamma$$
subject to $B \Gamma = R^{-1} U$
$$p_i^T \Gamma_i \geq |\Gamma_i| \cos \phi_i$$

Generate desired tool wrench

"fully-actuated" iff $\text{rank}(B) = 0$

$$B^T = \begin{bmatrix} I & I \\ S(r_1) & S(r_2) \end{bmatrix} \begin{bmatrix} \lambda_1 R_1 R e_1 \\ \lambda_2 R_2 R e_2 \end{bmatrix}$$
$$= \begin{bmatrix} I \\ S(r_1) \end{bmatrix} \begin{bmatrix} 0 & I \\ S(r_2) & S(r_2 - r_1) \end{bmatrix} \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix}$$

$\text{rank}(B) = 6$ $\implies (r_2 - r_1) \times (r_3 - r_1) \neq 0$

Prop. 1: 6-DOF tool fully-actuated iff at least three quadrators are used with their attaching points r_i not collinear.

Respect the spherical joint constraint

"force-closure"

tool is in "force-closure" with Γ, (Li et al. IEEE-TRA 2003)

S2QT System: Control Design

- Control objective

$$\langle y, R e_1 \rangle \rightarrow \langle y^d, \gamma_d \rangle$$

- Kinematics relation

$$y = x_a + R_e d \rightarrow \dot{y} = \dot{x}_a + R_e \omega \omega d$$

- Lyapunov function

$$V_1 = \frac{1}{2} e_T e_T + \frac{1}{2} \sum_{i=1}^{2} m_i \dot{e}_i \dot{e}_i + \frac{1}{2} \omega^2 (J_D - \sum_{i=1}^{2} m_i S^2(r_i)) \omega \omega + k_n (1 - \gamma^2_R R e_1)$$

- Control allocation

$$\min_{\Gamma_1, \Gamma_2, \ldots, \Gamma_n} \frac{1}{2} \Gamma^T \Gamma$$
subject to $\begin{bmatrix} I & I \\ S(r_1) & S(r_2) \end{bmatrix} \begin{bmatrix} \lambda_1 R_1 R e_1 \\ \lambda_2 R_2 R e_2 \end{bmatrix} = \begin{bmatrix} P_{du} \\ M_d \end{bmatrix}$
$$|P_{du} - c_1 + c_2 | < c_3$$
$$c_4 = \frac{1 - \cos^2 \phi_i}{\cos^2 \phi_i} 1_{x^2} - 1_{y^2} > 0$$

Closed-form solution exists if

$$\Rightarrow (y, R e_1) \rightarrow (y^d, \gamma_d)$$ asymptotically
S2QT Preliminary Experiment

Trajectory tracking (error < 5cm)
Impedance control (contact force > 14N)

drawer pushing teleoperation
door closing teleoperation

Conclusion and Future Direction

- Control of physical interaction in/with multi-robot systems
 - Decentralized: large number, loose coherency, local interaction
 - Centralized: tight coherency, small number, central coordination
- Decentralized control of physical interaction
 - Multi-UAV teleoperation: interplay between collective and local control
 - Multi-user haptics: high-level consensus + physical interaction
- Centralized control of physical interaction
 - Nonholonomic mobile manipulators: behavior decomposition
 - Multiple QM systems: complex dynamics and large-DOF
 - SmQI system: multi-robot system as distributed actuators
- Future directions
 - Almost fully-decentralized but still precise coherency?
 - Physical interaction control fused with algorithms?